3.512 \(\int \frac{x}{(1+x)^{3/2} \left (1-x+x^2\right )^{3/2}} \, dx\)

Optimal. Leaf size=282 \[ \frac{2 x^2}{3 \sqrt{x+1} \sqrt{x^2-x+1}}-\frac{2 \sqrt{2} \sqrt{x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{3 \sqrt [4]{3} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^2-x+1}}+\frac{\sqrt{2-\sqrt{3}} \sqrt{x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{3^{3/4} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^2-x+1}}-\frac{2 \left (x^3+1\right )}{3 \sqrt{x+1} \left (x+\sqrt{3}+1\right ) \sqrt{x^2-x+1}} \]

[Out]

(2*x^2)/(3*Sqrt[1 + x]*Sqrt[1 - x + x^2]) - (2*(1 + x^3))/(3*Sqrt[1 + x]*(1 + Sq
rt[3] + x)*Sqrt[1 - x + x^2]) + (Sqrt[2 - Sqrt[3]]*Sqrt[1 + x]*Sqrt[(1 - x + x^2
)/(1 + Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7
 - 4*Sqrt[3]])/(3^(3/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 - x + x^2]) - (
2*Sqrt[2]*Sqrt[1 + x]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(
1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(3*3^(1/4)*Sqrt[(1 + x)/(1
 + Sqrt[3] + x)^2]*Sqrt[1 - x + x^2])

_______________________________________________________________________________________

Rubi [A]  time = 0.194509, antiderivative size = 282, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238 \[ \frac{2 x^2}{3 \sqrt{x+1} \sqrt{x^2-x+1}}-\frac{2 \sqrt{2} \sqrt{x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{3 \sqrt [4]{3} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^2-x+1}}+\frac{\sqrt{2-\sqrt{3}} \sqrt{x+1} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{3^{3/4} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^2-x+1}}-\frac{2 \left (x^3+1\right )}{3 \sqrt{x+1} \left (x+\sqrt{3}+1\right ) \sqrt{x^2-x+1}} \]

Antiderivative was successfully verified.

[In]  Int[x/((1 + x)^(3/2)*(1 - x + x^2)^(3/2)),x]

[Out]

(2*x^2)/(3*Sqrt[1 + x]*Sqrt[1 - x + x^2]) - (2*(1 + x^3))/(3*Sqrt[1 + x]*(1 + Sq
rt[3] + x)*Sqrt[1 - x + x^2]) + (Sqrt[2 - Sqrt[3]]*Sqrt[1 + x]*Sqrt[(1 - x + x^2
)/(1 + Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7
 - 4*Sqrt[3]])/(3^(3/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 - x + x^2]) - (
2*Sqrt[2]*Sqrt[1 + x]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(
1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(3*3^(1/4)*Sqrt[(1 + x)/(1
 + Sqrt[3] + x)^2]*Sqrt[1 - x + x^2])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 17.2559, size = 265, normalized size = 0.94 \[ \frac{2 x^{2} \sqrt{x + 1} \sqrt{x^{2} - x + 1}}{3 \left (x^{3} + 1\right )} - \frac{2 \sqrt{x + 1} \sqrt{x^{2} - x + 1}}{3 \left (x + 1 + \sqrt{3}\right )} + \frac{\sqrt [4]{3} \sqrt{\frac{x^{2} - x + 1}{\left (x + 1 + \sqrt{3}\right )^{2}}} \sqrt{- \sqrt{3} + 2} \left (x + 1\right )^{\frac{3}{2}} \sqrt{x^{2} - x + 1} E\left (\operatorname{asin}{\left (\frac{x - \sqrt{3} + 1}{x + 1 + \sqrt{3}} \right )}\middle | -7 - 4 \sqrt{3}\right )}{3 \sqrt{\frac{x + 1}{\left (x + 1 + \sqrt{3}\right )^{2}}} \left (x^{3} + 1\right )} - \frac{2 \sqrt{2} \cdot 3^{\frac{3}{4}} \sqrt{\frac{x^{2} - x + 1}{\left (x + 1 + \sqrt{3}\right )^{2}}} \left (x + 1\right )^{\frac{3}{2}} \sqrt{x^{2} - x + 1} F\left (\operatorname{asin}{\left (\frac{x - \sqrt{3} + 1}{x + 1 + \sqrt{3}} \right )}\middle | -7 - 4 \sqrt{3}\right )}{9 \sqrt{\frac{x + 1}{\left (x + 1 + \sqrt{3}\right )^{2}}} \left (x^{3} + 1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x/(1+x)**(3/2)/(x**2-x+1)**(3/2),x)

[Out]

2*x**2*sqrt(x + 1)*sqrt(x**2 - x + 1)/(3*(x**3 + 1)) - 2*sqrt(x + 1)*sqrt(x**2 -
 x + 1)/(3*(x + 1 + sqrt(3))) + 3**(1/4)*sqrt((x**2 - x + 1)/(x + 1 + sqrt(3))**
2)*sqrt(-sqrt(3) + 2)*(x + 1)**(3/2)*sqrt(x**2 - x + 1)*elliptic_e(asin((x - sqr
t(3) + 1)/(x + 1 + sqrt(3))), -7 - 4*sqrt(3))/(3*sqrt((x + 1)/(x + 1 + sqrt(3))*
*2)*(x**3 + 1)) - 2*sqrt(2)*3**(3/4)*sqrt((x**2 - x + 1)/(x + 1 + sqrt(3))**2)*(
x + 1)**(3/2)*sqrt(x**2 - x + 1)*elliptic_f(asin((x - sqrt(3) + 1)/(x + 1 + sqrt
(3))), -7 - 4*sqrt(3))/(9*sqrt((x + 1)/(x + 1 + sqrt(3))**2)*(x**3 + 1))

_______________________________________________________________________________________

Mathematica [C]  time = 1.45613, size = 402, normalized size = 1.43 \[ \frac{2 x^2}{3 \sqrt{x+1} \sqrt{x^2-x+1}}-\frac{(x+1)^{3/2} \left (\frac{12 \sqrt{-\frac{i}{\sqrt{3}+3 i}} \left (x^2-x+1\right )}{(x+1)^2}+\frac{i \sqrt{2} \left (\sqrt{3}+3 i\right ) \sqrt{\frac{-\frac{6 i}{x+1}+\sqrt{3}+3 i}{\sqrt{3}+3 i}} \sqrt{\frac{\frac{6 i}{x+1}+\sqrt{3}-3 i}{\sqrt{3}-3 i}} F\left (i \sinh ^{-1}\left (\frac{\sqrt{-\frac{6 i}{3 i+\sqrt{3}}}}{\sqrt{x+1}}\right )|\frac{3 i+\sqrt{3}}{3 i-\sqrt{3}}\right )}{\sqrt{x+1}}+\frac{3 \sqrt{2} \left (1-i \sqrt{3}\right ) \sqrt{\frac{-\frac{6 i}{x+1}+\sqrt{3}+3 i}{\sqrt{3}+3 i}} \sqrt{\frac{\frac{6 i}{x+1}+\sqrt{3}-3 i}{\sqrt{3}-3 i}} E\left (i \sinh ^{-1}\left (\frac{\sqrt{-\frac{6 i}{3 i+\sqrt{3}}}}{\sqrt{x+1}}\right )|\frac{3 i+\sqrt{3}}{3 i-\sqrt{3}}\right )}{\sqrt{x+1}}\right )}{18 \sqrt{-\frac{i}{\sqrt{3}+3 i}} \sqrt{x^2-x+1}} \]

Antiderivative was successfully verified.

[In]  Integrate[x/((1 + x)^(3/2)*(1 - x + x^2)^(3/2)),x]

[Out]

(2*x^2)/(3*Sqrt[1 + x]*Sqrt[1 - x + x^2]) - ((1 + x)^(3/2)*((12*Sqrt[(-I)/(3*I +
 Sqrt[3])]*(1 - x + x^2))/(1 + x)^2 + (3*Sqrt[2]*(1 - I*Sqrt[3])*Sqrt[(3*I + Sqr
t[3] - (6*I)/(1 + x))/(3*I + Sqrt[3])]*Sqrt[(-3*I + Sqrt[3] + (6*I)/(1 + x))/(-3
*I + Sqrt[3])]*EllipticE[I*ArcSinh[Sqrt[(-6*I)/(3*I + Sqrt[3])]/Sqrt[1 + x]], (3
*I + Sqrt[3])/(3*I - Sqrt[3])])/Sqrt[1 + x] + (I*Sqrt[2]*(3*I + Sqrt[3])*Sqrt[(3
*I + Sqrt[3] - (6*I)/(1 + x))/(3*I + Sqrt[3])]*Sqrt[(-3*I + Sqrt[3] + (6*I)/(1 +
 x))/(-3*I + Sqrt[3])]*EllipticF[I*ArcSinh[Sqrt[(-6*I)/(3*I + Sqrt[3])]/Sqrt[1 +
 x]], (3*I + Sqrt[3])/(3*I - Sqrt[3])])/Sqrt[1 + x]))/(18*Sqrt[(-I)/(3*I + Sqrt[
3])]*Sqrt[1 - x + x^2])

_______________________________________________________________________________________

Maple [A]  time = 0.058, size = 356, normalized size = 1.3 \[ -{\frac{1}{3\,{x}^{3}+3}\sqrt{1+x}\sqrt{{x}^{2}-x+1} \left ( i\sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{i\sqrt{3}+2\,x-1}{-3+i\sqrt{3}}}}{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) \sqrt{3}+3\,\sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{i\sqrt{3}+2\,x-1}{-3+i\sqrt{3}}}}{\it EllipticF} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) -6\,\sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}}\sqrt{{\frac{i\sqrt{3}-2\,x+1}{i\sqrt{3}+3}}}\sqrt{{\frac{i\sqrt{3}+2\,x-1}{-3+i\sqrt{3}}}}{\it EllipticE} \left ( \sqrt{-2\,{\frac{1+x}{-3+i\sqrt{3}}}},\sqrt{-{\frac{-3+i\sqrt{3}}{i\sqrt{3}+3}}} \right ) -2\,{x}^{2} \right ) } \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x/(1+x)^(3/2)/(x^2-x+1)^(3/2),x)

[Out]

-1/3*(1+x)^(1/2)*(x^2-x+1)^(1/2)*(I*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-
2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF((
-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*3^(1/2)+3*
(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1
/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3
+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))-6*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-
2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticE((
-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))-2*x^2)/(x^
3+1)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x}{{\left (x^{2} - x + 1\right )}^{\frac{3}{2}}{\left (x + 1\right )}^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x/((x^2 - x + 1)^(3/2)*(x + 1)^(3/2)),x, algorithm="maxima")

[Out]

integrate(x/((x^2 - x + 1)^(3/2)*(x + 1)^(3/2)), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{x}{{\left (x^{3} + 1\right )} \sqrt{x^{2} - x + 1} \sqrt{x + 1}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x/((x^2 - x + 1)^(3/2)*(x + 1)^(3/2)),x, algorithm="fricas")

[Out]

integral(x/((x^3 + 1)*sqrt(x^2 - x + 1)*sqrt(x + 1)), x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x}{\left (x + 1\right )^{\frac{3}{2}} \left (x^{2} - x + 1\right )^{\frac{3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x/(1+x)**(3/2)/(x**2-x+1)**(3/2),x)

[Out]

Integral(x/((x + 1)**(3/2)*(x**2 - x + 1)**(3/2)), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x}{{\left (x^{2} - x + 1\right )}^{\frac{3}{2}}{\left (x + 1\right )}^{\frac{3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x/((x^2 - x + 1)^(3/2)*(x + 1)^(3/2)),x, algorithm="giac")

[Out]

integrate(x/((x^2 - x + 1)^(3/2)*(x + 1)^(3/2)), x)